Introduction

This guide is for Con Edison Customers who are considering installing or upgrading photovoltaic (solar) power generators less than 5 MW that are or will be connected to Con Edison’s electric distribution system. This guide is intended for installations of less than 5 MW, which is the current per-premise cap for value stack credits in New York State. Projects above 5 MW should contact dgexpert@coned.com

This guide is intended to provide high level details of the electric interconnection process, typical steps, challenges, and technical solutions associated with solar projects. This guide is not a design or technical specification.

Interconnection of all types of technology less than 5 MW are subject to the New York State Standardized Interconnection Requirements (SIR). All developers and applicants should read the SIR as the SIR will take precedence. This document is aligned to the October 2018 version of the SIR, and later revisions of the SIR will be integrated as expediently as possible.

Section 1: About Con Edison’s Grid

Con Edison provides electric services to 3.4 million customers in New York City and portions of Westchester County. Electricity is delivered through approximately 94,000 miles of underground cable, and almost 37,000 miles of overhead cable.

The distribution system supplies power to the Company’s low voltage network customers and radial customers from area substations at the 4kV, 13kV, 27kV, and 33kV primary service voltage levels. The majority of customers receive Low Tension (low voltage) service directly at the distribution system secondary voltage levels of 120/208V; 120/240V or 265/460V, while a small percentage of High Tension (high voltage) customers receive power at primary service voltage levels.

There are two types of electric distribution grid systems, radial grids and network grids.

Radial Grids traditionally have a single high voltage cable, often referred to as a feeder, sending energy from the substation to numerous distribution transformers tapped at various points along its length. The distribution transformers step the voltage down to low-voltage electricity and typically serve between 1 to 16 customers. These systems are called radial grids because the substation and feeders resemble a hub with spokes. Cables and transformers on radial grids are often above ground, seen predominantly in areas like Staten Island or Westchester.

Con Edison uses a reliable type of radial grid called an “auto-loop”. An auto-loop typically has two feeders, two additional backup feeders, and automatic switches at various points along the feeder run. In this configuration, feeder faults are rapidly isolated, with a portion of the affected customers being restored with one of the aforementioned backup feeders.

Network grids have multiple primary feeders supplying several network transformers tied together in parallel on the secondary side to provide energy into a low voltage grid (area network type) or a local...
building bus (spot network) where the consumer is connected. Thousands of low voltage customers are served off the low voltage grid of an area network. Cables and transformers on network grids are typically below ground and are used in densely populated areas. Network grids are used extensively throughout Manhattan, Brooklyn, Queens, and the Bronx, in addition to several small network grid areas in Staten Island and Westchester.

The different grid configurations have different associated characteristics. Network grids are considered more reliable than radial grids as there are redundant sources of backup power in case of failures on the grid. Additionally, with cables and transformers mostly underground, network grids tend to be less prone to outages resulting from severe weather conditions than above ground radial grids. Network grids are more complex than radial grids due to the increased number of system components and the redundant cabling.

Spot networks are a special class of network grids where one or multiple transformers are dedicated to a single, large energy consuming building like a skyscraper. A spot network is essentially a small network grid that is implemented for a single large user.

Both the radial and network grids are represented in Figure 1, below:

Figure 1 - Electric Distribution System
Section 2: Technical Interconnection Considerations for Solar

Con Edison manages the interconnection of solar generation less than 5 MW in capacity under the Standardized Interconnection Requirements (SIR). Please note that net metering in New York State is limited to projects 5MW (AC) and below. The SIR draws a distinction between projects greater than and less than 50 kW. The vast majority (approximately 98% at the time of this publication) of jobs are small scale (< 25 kW) residential solar jobs. Most solar projects under 25kW receive approval to build within a day.¹ Solar projects under 50kW are self-certified by the applicant.

Solar systems are typically designed to export power at least some of the time. The export of power can cause undesirable system impacts, such as voltage fluctuation or the repetitive operation of network protector relays, particularly for larger systems in excess of 50 kW. The technical considerations for accommodating large PV systems will vary depending on the type of electrical distribution service (e.g., radial, network) at the point of interconnection as well as any surrounding loads.

Radial Service

Interconnecting exporting solar generation to a radial service can be limited by the capacity of the local service, the primary feeder, the capability of a unit substation to accept reverse power flow, or switch and re-closer issues. The methods of resolving these constraints vary in complexity and cost.

Network Service

With network service, if one of the primary feeders supplying a portion of the network grid’s transformer were to experience an outage, the parallel connected secondary grid will try to provide power into the dead feeder. For this reason, these transformers are designed with an automatic switch, known as a network protector, which will open when energy feeds back from the low voltage bus toward the high-voltage feeder outage. This is the same condition as when a large PV system provides more power into the area network grid or spot network than there is load to serve. While Con Edison’s dense network grid system typically has enough load to “soak up” the exported power, the electric system can be adversely affected by the back-feed of power.

For applicants connecting to Con Edison’s secondary grid, the engineering review will determine if the service cable to the site is adequate to carry the export, in addition to determining if export into the network will cause network protector operation. If the service cable is not rated for the expected solar export capacity, the customer will need to upgrade the existing service or put in an additional service. For those projects where local network protectors will be impacted, Con Edison has a solution called “Adaptive Network Protector (NWP) Relay Settings” where modifications are made to the relays of nearby transformers.

In addition, in some cases the export of power from the PV can cause overvoltage and/or power quality issues. In these cases, Con Edison can deploy Communication Aided Tripping (described below) to help keep select NWP relays closed and provide greater voltage stability. However in some cases, Con Edison

¹ A contractor who has not yet submitted more than 10 applications to Con Edison or is not a qualified contractor in the NY-Sun program will be reviewed within the SIR timeline for design approval (10 days).
will also need to rely on the inverter itself to help regulate voltage. This generally requires the inverter to consume VARs at a fixed power factor, or better still utilize the “Advanced” inverter features as outlined in the draft IEE1547 specification (Volt-VAR and Volt-Watt Characteristics) with settings recommended by Con Edison. When the inverter is required to prevent overvoltage, the function shall be “supervised” by a utility grade overvoltage relay. Additionally, Con Edison requires communications be established to any inverter managing voltage by consuming VARs to ensure voltage is maintained within ANSI limits.

Spot or Isolated Networks

For customers on dedicated spot or isolated networks, the opening of a network protector would result in a loss of power to the customer. Con Edison’s traditional approach to maintain reliability for customers wanting to install solar on a spot or isolated network would be to require a reverse power relay that would prevent export. Since 2012, Con Edison has begun offering solutions to enable export across network protector relays through pilot programs, making it the only utility in the nation to allow export on network service. This solution is called “Communications Aided Tripping” (CAT) and it involves the following:

1.) Reducing sensitivity on local network protectors – Reprogramming network protectors to an “insensitive” mode that allows back-feed of up to 50% of the transformer rating.
2.) Supervisory Control and Data Acquisition (SCADA) and anti-islanding – Installing equipment to monitor the performance of the solar generator and the network protectors and allow for remote tripping in the event of system contingencies and/or outage risk to the customer.

The solutions offered will be tailored to the specific service configurations. Costs for CAT will be project specific and determined by your CPM but very generally can be in the range of $100,000. Generally speaking, the reduced sensitivity solution on local network protector relays is more suitable for interconnections to the low voltage grid, whereas the communication-aided tripping is more suitable for isolated or spot networks.

Equipment Details

The following list of equipment may be required (and installed as needed) for Con Edison PV projects, particularly those using the CAT solution. The exact requirements and specifications of the equipment will be determined during engineering review and site visits.

The customer is responsible for the cost of procuring and installing this equipment, regardless of whether the customer or Con Edison is installing it.

- **Supervisory Control and Data Acquisition (SCADA):** This equipment collects data from the customer’s inverters and Con Edison’s network protectors. In addition to providing communications, SCADA also allows for remote operations and controls of the network protectors.

2 This is an estimate only. Project costs can be higher or lower depending on project specifics. Customers should not rely on this number for before they receive actual costs and written design approval from Con Edison.
Version 3, December 2018

- **Anti-islanding device**: This equipment is sometimes required, based on a case-by-case assessment of solar system size and the type of service to the customer. The purpose of this device is to ensure that solar export does not cause a customer outage if one or more feeders go out of service.

- **DNP3 Inverter or DNP3-enabled communications relay**: DNP3 communications protocols are required in order to ensure reliable, consistent communications between the customer’s inverters and the local network protectors. This can be achieved by either installing inverters that “speak” DNP3, or by installing a DNP3 enabled communications relay. Translators from Modbus to DNP3 will not be allowed as they have not performed adequately in the field. The customer is responsible for providing either the inverter or the relay.

- **Network protector micro-processor relay and associated cabling**: A device to remotely monitor the operations of the network protector. This is required to enable two-way communications. Con Edison network protectors are typically installed with a standard non-communicating relay and must be upgraded for participation in this program. Con Edison will install the relays and any required cables.

- **Conduit/cable**: Cable and conduit will be run between the communications and protective equipment. The customer will be required to provide their own communications cable, specified by Con Edison. The customer will make the connections and bring the cable to Con Edison, who will then connect the PV to the bus to complete the installation. Conduit may be required, depending on existing conditions at the site.

Section 3: Interconnection Process

As noted above, Con Edison follows the New York State SIR to review and approve all solar projects under 5 MW. Prior to application submittal, please read the SIR thoroughly to familiarize yourself with application process and timelines, technical and operating requirements, and required contracts and forms. In advance of application submission please review Rider R, which is the Net metering and value stack tariff for Con Edison (discussed further in Section 4), and register with Power Clerk. The Small DG portal should be used for Interconnection requests less than or equal to 50kW. The Large DG portal should be used for Interconnection requests greater than 50kW – 5MW.

Taking the following steps prior to and during the application submission will help speed up the review:

- Include accurate account (14 digit) and meter (7 digit) numbers
 - Use host account detail for Remote Net Metering (RNM) and Community DG (CDG) projects
- Include accurate customer email address
- Include the Con Edison service information in all drawings
- Include additional existing on-site Distributed Energy Resources (DER) in the application
- Enter the rating per inverter and number of inverters
- Ensure consistency in all forms and documents
When an application is ready for submission, the applicant should upload all documents listed in Appendix F of the SIR. The applicant should also include any additional rate application forms (Form G or Community DG Appendices A and B, as applicable).

Additional technical information may be required if the application progresses to a Coordinated Electric System Interconnection Review (CESIR).

To provide additional guidance in preparing materials for PV applications, Con Edison has prepared checklists for three-line diagrams and field verification tests. These checklists can be found on the Con Edison DG website and provide Con Edison requirements for system diagrams and verification tests, as well as consistency in reviews from project to project.

Examples of some of the features that should be called out on the three-line diagram are shown in Figures 2 and 3 below:

![Figure 2 - Disconnect Switch and Existing Service clearly labelled](image-url)
Applications are initiated through Power Clerk, our online application portal for distributed generation systems. The [Small DG portal](#) should be used for Interconnection requests less than or equal to 50kW. The [Large DG portal](#) should be used for Interconnection requests greater than 50kW – 5MW. After logging into the portal the relevant customer and project information should be entered with the documents described above and attached when prompted. Once all information is entered or attached and submitted, the application will be routed to the appropriate Con Edison Energy Services personnel and the application review will begin. At this time, the SIR process is different for small (< 50 kW) and large (>= 50 kW) projects.

Small Projects (< 50 kW) Process

For projects under 50 kW, after the application is submitted, the applicant can expect the following to happen:

- Con Edison will review the diagram and issue a line diagram approval letter if all documents have been submitted and are complete
- The applicant/contractor will complete construction
- The applicant/contractor will test the inverter
- The applicant/contractor will submit the [self-certification form](#) by uploading through Power Clerk
- Con Edison will perform final review and place net meter order and issue the final acceptance letter
Large Projects (50 kW – 5 MW) Process

The application process for projects between 50 kW and 5 MW includes more complex applicant choices and utility responses. This is illustrated in the flowchart in Figure 4, below:

April 2018 NYS SIR - Simplified Process Flow Chart for 50kw – 5MW

The general steps in the process include:

1.) Applicant submits Pre-Application Report request (Optional)
2.) Con Edison returns the Pre-Application Report
3.) Applicant submits an application
4.) Con Edison reviews the application for completeness
5.) Con Edison performs preliminary screening analysis
 a. If application passes the six preliminary screens, Applicant proceeds to construction
6.) Applicant selects additional review/meeting option (Note: this can be an iterative process)
 a. Preliminary analysis results meeting to explain screening process and identify any simple changes that could lead to the project being approved.
 b. Supplemental Screening Analysis, at customer choice of this option, to perform three additional screens, which if passed progress the application to construction.
c. CESIR, at customer choice of this option, to perform in depth analysis of the proposed DG system to determine the system changes and cost estimates needed to accommodate interconnection. CESIR costs generally range up to $20,000 for inverter-based systems and $27,000 for rotating machines. Cost is dependent upon size, operation, type of electric distribution service, and type of equipment. Numbers may vary slightly for high-tension service but are in a similar range.

d. Withdraw/cancel – the applicant has the option to withdraw or cancel their application at any time.

7.) Con Edison performs requested review
8.) If applicable, applicant commits to construction costs and provides full payment within 120 business days
9.) Applicant and Con Edison complete their respective construction
10.) Con Edison performs field verification testing
11.) If applicable, Applicant addresses any issues emerging from the field verification testing and Con Edison issues final acceptance letter

Note on failed inspections:
If you disagree with a failed inspection, send an email to your CPM, your engineer, and the email address dl-DGinspectionappeal@coned.com. This email goes to Energy Services and Distribution Engineering senior managers. The email subject line should include the case number and “Appeal of Verification Test”. The email should describe in detail, as related to the verification test checklist, why you disagree with the results of the inspection. Include any documentation or photographs that are necessary. In addition, upload the email to the case in Power Clerk.

You will receive an acknowledgement of your appeal in 2 business days via email, and Con Edison will respond with a resolution and rationale within 10 business days.

Note on solar projects that are applying a majority of value stack credits to other facilities:
Community Distributed Generation (CDG) and Remote Net Metering (RNM) projects may be designed to export most of their capacity by installing the project behind a new meter. In these cases, the applicant should apply for a New Service through Project Center before completing their Power Clerk application. Then in Power Clerk the applicant should select “No” for “Is there an existing service at the site of the proposed DG project?” on page 1 of the application. Please note in your scope of work that you will be requesting a new meter. The engineering review will determine if the existing service to the building is capable of carrying the export or if a new physical service will be needed.

Note on solar projects that will require an outage to interconnect their project:
If your project requires that your site have an outage in order to interconnect, please work with your CPM to coordinate that. It is important to note that Con Edison crews will be available at no charge during regular business hours: Monday-Friday, 7:00am – 3:00pm excluding holidays. However, if you request an outage outside of these normal working hours, or if the outage extends beyond 3:00pm, you will be responsible for full payment of the cost for time spent outside working hours, including overtime.
Note on placement of customer equipment relative to Con Edison revenue metering compartment:
The Con Edison revenue metering compartments represent the dividing point between Customer equipment and Con Edison’s system. Customer equipment is not to be installed, nor are any customer connections to be made, inside Con Edison’s metering compartment.

Roles and Responsibilities

Throughout the interconnection process, applicants will interact with a number of Con Edison personnel with various roles and responsibilities, including:

- Energy Services Customer Project Manager (CPM) – Primary point of contact for all communication, scheduling of inspections and overall process oversight for your project
- Distribution Engineering – Electrical interconnection experts for Con Edison who perform the technical document reviews, perform the Supplemental Review and CESIR studies, attend technical meetings, witness verification testing and perform the final inspection.
- Distributed Generation Ombudsman – An additional layer of assistance in understanding the Con Edison interconnection process, tariff interpretations, and new policy implications which can be leveraged even prior to commencing your solar projects. The Ombudsman’s office can also provide assistance on any unresolved project-specific issues.
- Customer Care Group, Net Metering – Handles net metering billing and post-installation billing questions

Section 4: Rates and Service Classifications

The service classifications for customers typically installing solar generation include the following. Con Edison assigns the service class based on the customer characteristics:

- **Service Class 1 (SC1) – Residential/Religious**: This rate is for residential customers. It is volumetric billing based on energy usage (kWh). SC 1 customers have no demand charge.
- **Service Class 2 (SC2) – General – Small**: This rate is for small commercial customers with demand less than 10kW. It is also volumetric billing based on energy usage (kWh). SC 2 customers have no demand charge.
- **Service Class 8 (SC8) – Multiple Dwellings**: This rate is for master-metered residential customers. It includes energy usage (kwh) billing with a variable demand charge (kW), adjusted monthly based on the highest 30 minutes of demand
- **Service Class 9 (SC9) – General Large**: This rate is for large commercial customers with demand 10kW or larger. It is energy usage (kwh) billing with a variable demand charge (kW), adjusted monthly based on the highest 30 minutes of demand

These service class distinctions will determine how the credits are applied, as will the specific solar-eligible program: Phase 1 Net Metering, Value Stack, Remote Net Metering, or Community DG. All configurations use a variant of applying the excess generation from one solar system across one or multiple accounts.
Version 3, December 2018

Value of Distributed Energy Resource (VDER)

On March 9, 2017 the New York State Public Service Commission (PSC) released an order to transition away from net energy metering (NEM) to VDER.

Grandfathered NEM

Customers with Solar PV installed before March 9, 2017 receive NEM for the life of the system.

Under Grandfathered NEM, excess solar credits are cashed out every January by default. A Grandfathered NEM customer may make a once time election to change the cash out month. Most customers choose to cash out their solar banks during a month when they anticipate having the fewest solar credits because the cash-out value—the avoided cost of energy—is less than the value of applying your solar credits to your energy consumption. For this reason, it is recommended that you monitor your energy use for a full year before changing your cash out month.

Existing NEM customers may opt in to Value Stack rates.

Phase 1 NEM

Residential customers (SC 1) with less than 25kW and Small Commercial customers (SC 2) with less than 2 MW, and with solar installed after March 10, 2017 but before January 1, 2020 receive Phase 1 NEM compensation. Phase 1 NEM is similar to Grandfathered NEM with the following differences:

- A project’s compensation under Phase 1 NEM lasts for a term of 20 years
- Credits carry over month-to-month and year-to-year; there is no annual cash-out

Phase 1 NEM is the current compensation mechanism for SC1 and SC 2 onsite customers with solar less than 25 kW. A limited number of solar projects for customers other service classifications (e.g., SC 8 or 9) that received system design approval and paid a 25% deposit toward interconnection upgrade costs (if any) by July 17, 2017 are eligible for Phase 1 NEM compensation. New projects for demand-billed customers, as well as RNM and CDG projects, are eligible for the Value Stack rates described in the following sections.

![Figure 5 - Example Grandfathered or Phase 1 net meter credited bill](image)
Remote Net Metering

The general process and application of remote net metering is described below. The rates will be governed by the tariff and specific questions can be directed to your project manager or the DG ombudsman.

Remote net metering describes the configuration when net metering credits produced by one solar system (the host) are distributed to the same customer’s multiple accounts on different locations (the satellite(s)). For a customer to be eligible for remote net metering, several conditions must be met:

- The host account must be non-residential
- The host account and satellite account must be different and shall be established in the same customer name and located on property owned or leased by the customer
 - Satellite accounts can have more than one host account
- Host and satellite accounts can be located in different NYISO zones within Con Edison service territory
- Form G must be used for the application

Community DG

Community Distributed Generation (CDG) describes the configuration when net metering credits from one solar system (the host) are distributed to multiple different customers (the satellites). For a customer to be eligible for CDG, several conditions must be met:

- The host account must be non-residential
- Host and satellite accounts can be located in different NYISO zones within Con Edison service territory
- At least 10 satellite customers unless all are located at the same premise as the host
- Each customer must have at least 1,000 kWh annual usage
- Satellite customers above 25 kW can take up no greater allocation than 40% of the net metering credits
- Potential service upgrades required to accommodate export
- Use Community DG Procedural Document for application, which requires self-certification of creditworthiness, cyber security, NYISO load zone, and any other obligations

Value Stack

Unlike traditional NEM, VDER Value Stack compensation is not based on volumetric metering; the energy produced and exported to the grid will not be credited on the customer’s utility bill at the same kWh rate at which energy is consumed. Instead, the Value Stack consists of six potential components and converts energy production into monetary credits that vary by location and time.

Value Stack credits are based on export into the utility grid. Solar generation that instantaneously reduces customer load will reduce the customer bill; generation that exceeds a customer’s load behind the meter is exported to the grid and credited according to the Value Stack rates. For more information
about VDER, including a description of all of the components of the Value Stack, please visit our Private Generation Tariffs webpage.

Figure 6 - Example Demand Customer Value Stack bill

Important Net Metering Considerations

When evaluating your net metering options, there are several concepts that you should be familiar with: level billing, time of use, net meter vs. solar production meters, and demand customers

Level Billing

Level billing is an option offered by Con Edison which allows a customer to spread their total expected annual energy costs over twelve equal monthly payments throughout the year. After installing a solar system, your total expected annual energy costs will be reduced by the solar output. It will take some time for your level payment plan to adjust to this lower energy use, and in the interim you will be putting more money toward your total expected annual energy costs than would actually be required. For this reason, upon completing your solar project you should call Con Edison (1-800-75-CONED) to be removed from the level billing plan. After a year off the program, you will have established your new
lower total expected annual energy cost and can call us to re-join the level billing plan. Additional information on level billing can be found here.

Time of Use Rates

Time of Use rates generally do not benefit to solar-only customers, as solar credits remain in the on-peak or off-peak “bucket” in which they are generated. Additional information on time of use rates can be found here.

Net Meters vs. Production Meters

Net Metering billing is based on the excess energy sent back through the net meter, not the solar system production meter. The production meters that are typically provided by solar developers do not account for the energy drawn from the grid or the overall consumption of the premises.

Additional Resources

For more information on any topics related to Solar Generation or the relevant billing structures, please visit:

- Con Edison’s Understanding Solar Video
- www.coned.com/solar
- Is Solar Right for Me?
- Solar FAQs

Section 5: Solar Paired with Other Technologies

When pairing PV systems with other technologies, the technical considerations generally become more complex than can be covered in a high level guide. However, the following are some frequently designed configurations along with the typical interconnection solution required to accommodate them. For general questions about a concept or potential project, developers can contact the DG Ombudsman’s office for high-level feedback. For more specific information on configuration and feasibility, a formal interconnection request should be submitted.

1. Residential Solar system with storage as a backup – When a residential solar system is paired with an onsite storage system used solely for backup, the solar application should be submitted as a normal PV interconnection request in Power Clerk. The emergency back-up generator application (lead-acid, lithium ion, etc.) should be submitted in Project Center. An emergency back-up generator is defined as a generator that does not operate in parallel with the grid (never connects to the grid) via switching/control scheme.

2. Adding energy storage operated in parallel with the grid to an existing PV system – A new application should be submitted for the energy storage system by selecting ‘Battery Energy Storage’. The inverter specifications should be entered for the battery in discharge mode. In addition, the technical specifications for charging the battery must be specified (peak kW/KVA required to charge) in the scope of work statement, and if these exceed the local service, upgrades to the existing service may be required. Effective June 18, 2018 you will be asked on
the initial application in PowerClerk to enter all information related to the battery in order to complete SIR Appendix K “Energy Storage System (ESS) Application Requirements / System Operating Characteristics / Market Participation.”

3. Hybrid Solar plus energy storage – a single hybrid application should be submitted for both the solar and the energy storage. This is different from the standard application in PowerClerk. Start this application by choosing “New – All Other Requests, click here!” from the PowerClerk home screen. Then choose the “Apply to interconnect a Hybrid System, i.e. a DG system that includes an Energy Storage System (ESS)” option and hit submit.” This will then initiate a project and move you to a status where you are able to complete the “Hybrid Technology Interconnection Application.” As with the previous bullet, PowerClerk will include the required questions in order to complete SIR Appendix K. A single combined system diagram will likely be required to enable engineering evaluation.

4. Hybrid generation systems with Solar plus other distributed generation types (non-ESS) which will all operate in parallel with the grid – Separate applications should be submitted for each generator (e.g one application for Solar and one for Fuel Cell), referencing the master case numbers of other systems generated in the “Project Overview” field as they are. These parallel projects should be highlighted to the Customer Project Manager as well. Even if all technologies are being installed by separate developers, a single combined system diagram may be required to enable engineering evaluation.

Addition of non-net meter eligible technologies, or technologies that receive credits under different structures than the PV to be installed, behind a single Con Edison meter will require specialized metering and/or relaying schemes to accommodate. Con Edison must be made aware of all DG technologies on site at the time of your initial request to add PV to avoid billing problems which could result in a loss or delay in receiving your net metering credits.

Residential and Small Commercial (SC 1 and SC 2) customers are eligible to pair grid-parallel energy storage with solar and take service under the Phase 1 NEM tariff.

Section 6: Contacts for Further Questions

If you have questions about your specific project application, please contact your Energy Services Customer Project Manager (CPM). You will receive their contact information when you submit your application in Power Clerk.

For general questions regarding DG interconnection, please contact the Distributed Generation group at dgexpert@coned.com.

For residential billing questions, please contact netmetering@coned.com or 212-780-6600. For large/commercial customers please e-mail dl-CGNet-metering@coned.com

In addition, New York State Department of Public Service and the New York State Energy Research and Development Authority have dedicated “DG Ombudsmen” who can help answer questions. Their contact information is available here.
Section 7: Definitions and Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIR</td>
<td>Standardized Interconnection Requirements</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>DNP3</td>
<td>Distributed Network Protocol</td>
</tr>
<tr>
<td>RNM</td>
<td>Remote Net Metering</td>
</tr>
<tr>
<td>CDG</td>
<td>Community Distributed Generation</td>
</tr>
<tr>
<td>DER</td>
<td>Distributed Energy Resources</td>
</tr>
<tr>
<td>CESIR</td>
<td>Coordinated Electric System Interconnection Review</td>
</tr>
<tr>
<td>VDER</td>
<td>Value of Distributed Energy Resources</td>
</tr>
</tbody>
</table>