1. The customer's bus bars are to be rigidly supported and be capable of supporting the weight of the transformer (maximum 35 pounds).

2. Aluminum bus, when used, is to be T316 or silver plated at the contact surfaces according to ASTM B-293-92, recommended practice for silver plating of aluminum.

3. For service or load connections where the customer's bus bars are aluminum, all connections are to be made using cadmium plated steel bolts and hex nuts with a Belleville washer under each nut and each bolt head, with the marked side visible.

4. Belleville washers are to be as follows: 0.0001" x 17/32", 0.0003" x 1/8" Max. Approx. capacity 3,000 lbs. The top and bottom surfaces of each washer is to be marked SO as to be consistent with the nut on cap screw in place.

5. Transformers are to be mounted by means of cadmium plated steel, cap screws on the line detail, and cadmium plated steel, hex. nuts on the load detail.

6. When the customer's bus is aluminum, a Belleville washer is to be placed under the cap screw on line detail, and another under the hex. nut on the load detail, with the marked side visible, bolts and nuts are to be tightened until the washers are flattened, then backed-off 1/8 turn.

7. The bus detail may be enclosed in a separate current transformer cabinet or in a combined service disconnect and current transformer cabinet.

8. That part of the cabinet housing the transformers is to be separated by barriers (1/8" thick non-ferrous) from the remainder of the cabinet and be equipped with separate feeders with double socks and three-way switch. The handles is to have facilities to accommodate standard company seals and poles with 1/4" holes. The door opening is to give a minimum clearance horizontally of 4 inches from the center line of outer transformers and vertically of 8 inches from the center line of the shunt bus. The flanges are to be installed with the base vertical clearance from the shunting stud as the door opening.

9. The minimum clearance from the center line of outer transformers to the sides of the cabinet or to the neutral bus is to be 6 inches.

10. The neutral bus must be within the cabinet and 2 inches minimum from the side of the cabinet, and 3 1/2 inches minimum from the rear of the cabinet.

11. There is to be a clear space of at least 3 feet in front of the current transformer enclosure.

12. Current transformers are to be installed on the line side of service disconnect. When a single current is to be supplied, the customer must be supplied by the service disconnect with regard to the circuit transformer switch before the 1 G circuit breaker.

13. The transformer housing is to be equipped with a label or marking switch before the 1 G circuit breaker.

14. All flanges are to be marked with the last 4 digits of the order number.

15. Maximum cable sizes:
 - 4-sets of 800 kcmil cables, 6-sets of 800 kcmil cables, 12-sets of 600 kcmil cables, 6-sets of 600 kcmil cables, 12-sets of 800 kcmil cables, 12-sets of 800 kcmil cables, 12-sets of 600 kcmil cables. 12-sets of 600 kcmil cables. 12-sets of 800 kcmil cables. 12-sets of 800 kcmil cables.

16. Laminations must be insulated with 1/4 inch space using fillers and not stacked to comply with note 16.

BUS AND CABINET DETAILS FOR INSTALLATION OF LOW VOLTAGE 400 OR 800 AMP. BAR TYPE CURRENT TRANSFORMERS

CONSOLIDATED EDITION COMPANY OF N. Y., INC.
DISTRIBUTION ENGINEERING DEPARTMENT
DATE 10/88
SPEC. MES 298 REV. 15

REF. DWG:
WIRING DIAGRAM FOR 400-800 AMP. CTS 96
S3 NO. 96
LOW TENSION WIRING INSTALLATIONS 96
ORDER NO. 97
ORDERING AND ASSEMBLING ELECTRIC METERS AND METER DEVICES 97

DATE 9/17/94
NO. DWG. WIP NO. 47
1/8 REV. 15

OPTIONAL METHOD
Use approach 1-3 steel, spline bolts, 1/2-13, flanged spline press nut, and hex. see Sect. A-A.

For all other bolt locations use 1/2-13 hex. head bolts, tabs, and lock washers. See Sect. A-A.

STANDARD METHOD
1/2-13 hex. head bolt, tab and lock washer. See Sect. A-A.